skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gim, Hansung B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a systematic search for radio active galactic nuclei (AGNs) in dwarf galaxies using recent observations taken by the Very Large Array Sky Survey (VLASS). To select these objects, we first establish a criterion to identify radio-excess AGNs using the infrared-radio correlation parameter,q, that describes the tight relation between radio and IR emission in star-forming galaxies. We find a 2σthreshold ofq< 1.94 to select radio-excess AGNs, which is derived from a sample of ∼7000 galaxies across the full mass range in the NASA-Sloan Atlas that have radio and IR detections from VLASS and the Wide-Field Infrared Survey Explorer, respectively. We create catalogs of radio-excess AGNs and star-forming galaxies and make these available to the community. Applying our criterion to dwarf galaxies with stellar massesM≲ 3 × 109Mand redshiftsz≤ 0.15, and carefully removing interlopers, we find 10 radio-excess AGNs with radio-optical positional offsets between ∼0″ and 2.′3 (0–2.7 kpc). Based on statistical arguments and emission line diagnostics, we expect the majority of these radio-excess AGNs to be associated with the dwarf host galaxies rather than background AGNs. Five of the objects have evidence for hosting AGNs at other wavelengths, and five objects are identified as AGNs in dwarf galaxies for the first time. We also identify eight variable radio sources in dwarf galaxies by comparing the VLASS epoch 1 and epoch 2 observations to Faint Images of the Radio Sky at Twenty-centimeters detections presented in A. E. Reines et al. (2020). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract As a part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey, we investigate indirect evidence of gas inflow into the disk of the galaxyNGC 99. We combine optical spectra from the Binospec spectrograph on the MMT telescope with optical imaging data from the Vatican Advanced Technology Telescope, radio Hi21 cm emission images from the NSF Karl G. Jansky’s Very Large Array, and UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope. We measure emission lines (Hα, Hβ, [Oiii]λ5007, [Nii]λ6583, and [Sii]λ6717, 31) in 26 Hiiregions scattered about the galaxy and estimate a radial metallicity gradient of −0.017 dex kpc−1using the N2 metallicity indicator. Two regions in the sample exhibit an anomalously low metallicity (ALM) of 12 + log(O/H) = 8.36 dex, which is ∼0.16 dex lower than other regions at that galactocentric radius. They also show a high difference between their Hiand Hαline of sight velocities on the order of 35 km s−1. Chemical evolution modeling indicates gas accretion as the cause of the ALM regions. We find evidence for corotation between the interstellar medium ofNGC 99and Lyαclouds in its circumgalactic medium, which suggests a possible pathway for low metallicity gas accretion. We also calculate the resolved Fundamental Metallicity Relation (rFMR) on subkiloparsec scales using localized gas-phase metallicity, stellar mass surface density, and star formation rate surface density. The rFMR shows a similar trend as that found by previous localized and global FMR relations. 
    more » « less
    Free, publicly-accessible full text available November 25, 2025
  3. Abstract Henize 2–10 is a dwarf galaxy experiencing positive black hole (BH) feedback from a radio-detected low-luminosity active galactic nucleus. Previous Green Bank Telescope (GBT) observations detected a H2O “kilomaser” in Henize 2–10, but the low angular resolution (33″) left the location and origin of the maser ambiguous. We present new Karl G. Jansky Very Large Array observations of the H2O maser line at 22.23508 GHz in Henize 2–10 with ∼2″ resolution. These observations reveal two maser sources distinct in position and velocity. The first maser source is spatially coincident with the known BH outflow and the region of triggered star formation ∼70 pc to the east. Combined with the broad width of the maser (W50∼ 66 km s−1), this confirms our hypothesis that part of the maser detected with the GBT is produced by the impact of the BH outflow shocking the dense molecular gas along the flow and at the interface of the eastern star-forming region. The second maser source lies to the southeast, far from the central BH, and has a narrow width (W50∼ 8 km s−1), suggesting a star formation–related origin. This work has revealed the nature of the H2O kilomaser in Henize 2–10 and illustrates the first known connection between outflow-driven H2O masers and positive BH feedback. 
    more » « less
  4. Abstract Henize 2–10 is a dwarf starburst galaxy hosting a ∼106Mblack hole (BH) that is driving an ionized outflow and triggering star formation within the central ∼100 pc of the galaxy. Here, we present Atacama Large Millimeter/submillimeter Array continuum observations from 99 to 340 GHz, as well as spectral line observations of the molecules CO (1–0, 3–2), HCN (1–0, 3–2), and HCO+ (1–0, 3–2), with a focus on the BH and its vicinity. Incorporating centimeter-wave radio measurements from the literature, we show that the spectral energy distribution of the BH is dominated by synchrotron emission from 1.4 to 340 GHz, with a spectral index ofα≈ − 0.5. We analyze the spectral line data and identify an elongated molecular gas structure around the BH with a velocity distinct from the surrounding regions. The physical extent of this molecular gas structure is ≈130 pc × 30 pc and the molecular gas mass is ∼106M. Despite an abundance of molecular gas in this general region, the position of the BH is significantly offset from the peak intensity, which may explain why the BH is radiating at a very low Eddington ratio. Our analysis of the spatially resolved line ratio between COJ= 3–2 andJ= 1–0 implies that the CO gas in the vicinity of the BH is highly excited, particularly at the interface between the BH outflow and the regions of triggered star formation. This suggests that the cold molecular gas is being shocked by the bipolar outflow from the BH, supporting the case for positive BH feedback. 
    more » « less
  5. Abstract We explore the growth of the stellar disks in 14 nearby spiral galaxies as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey. We study the radial distribution of specific star formation rates (sSFRs) and investigate the ratio of the difference in the outer and inner sSFRs (ΔsSFR= sSFRout– sSFRin) of the disk and the total sSFR, ΔsSFR/sSFR, to quantify disk growth. We find ΔsSFR/sSFR and the Higas fraction to show a mild correlation of Spearman’sρ= 0.30, indicating that star formation and disk growth are likely to proceed outward in galactic disks with high Higas fractions. The Higas fractions and ΔsSFR/sSFR of the galaxies also increase with the distance to the nearestLneighbor, suggesting that galaxies are likely to sustain the cold gas in their interstellar medium and exhibit inside-out growth in isolated environments. However, the Hicontent in their circumgalactic medium (CGM), probed by the Lyαequivalent width (WLyα) excess, is observed to be suppressed in isolated environments, as is apparent from the strong anticorrelation between theWLyαexcess and the distance to the fifth nearestLneighbor (Spearman’sρ= −0.62). As expected,WLyαis also found to be suppressed in cluster galaxies. We find no relation between theWLyαexcess of the detected CGM absorber and ΔsSFR/sSFR, implying that the enhancement and suppression of the circumgalactic Higas does not affect the direction in which star formation proceeds in a galactic disk or vice versa. 
    more » « less
  6. Direct-collapse black holes (DCBHs) of mass ∼104 − 105 Mthat form in HI-cooling halos in the early Universe are promising progenitors of the ≳109 Msupermassive black holes that fuel observedz ≳ 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up toz ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈1 − 5 μm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼29 AB mag. We identify two objects with spectral energy distributions consistent with theoretical DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of ≲5 × 10−4comoving Mpc−3(cMpc−3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the theoretical models atz ≈ 6 − 14. 
    more » « less
  7. Abstract We present our investigation of the extended ultraviolet (XUV) disk galaxy, NGC 3344, conducted as part of Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium survey. We use surface and aperture photometry of individual young stellar complexes to study star formation and its effect on the physical properties of the interstellar medium. We measure the specific star formation rate (sSFR) and find it to increase from 10 −10 yr −1 in the inner disk to >10 −8 yr −1 in the extended disk. This provides evidence for inside-out disk growth. If these sSFRs are maintained, the XUV disk stellar mass can double in ∼0.5 Gyr, suggesting a burst of star formation. The XUV disk will continue forming stars for a long time due to the high gas depletion times ( τ dep ). The stellar complexes in the XUV disk have high-Σ H I and low-Σ SFR with τ dep ∼ 10 Gyr, marking the onset of a deviation from the traditional Kennicutt–Schmidt law. We find that both far-ultraviolet (FUV) and a combination of FUV and 24 μ m effectively trace star formation in the XUV disk. H α is weaker in general and prone to stochasticities in the formation of massive stars. Investigation of the circumgalactic medium at 29.5 kpc resulted in the detection of two absorbing systems with metal-line species: the stronger absorption component is consistent with gas flows around the disk, most likely tracing inflow, while the weaker component is likely tracing corotating circumgalactic gas. 
    more » « less
  8. Abstract We report the discovery of two kinematically anomalous atomic hydrogen (H i ) clouds in M 100 (NGC 4321), which was observed as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey in H i 21 cm at 3.3 km s −1 spectroscopic and 44″ × 30″ spatial resolution using the Karl G. Jansky Very Large Array. 15 15 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. These clouds were identified as structures that show significant kinematic offsets from the rotating disk of M 100. The velocity offsets of 40 km s −1 observed in these clouds are comparable to the offsets seen in intermediate-velocity clouds (IVCs) in the circumgalactic medium (CGM) of the Milky Way and nearby galaxies. We find that one anomalous cloud in M 100 is associated with star-forming regions detected in H α and far-ultraviolet imaging. Our investigation shows that anomalous clouds in M 100 may originate from multiple mechanisms, such as star formation feedback-driven outflows, ram pressure stripping, and tidal interactions with satellite galaxies. Moreover, we do not detect any cool CGM at 38.8 kpc from the center of M 100, giving an upper limit of N(H i ) ≤1.7 × 10 13 cm −2 (3 σ ). Since M 100 is in the Virgo cluster, the nonexistence of neutral/cool CGM is a likely pathway for turning it into a red galaxy. 
    more » « less
  9. Abstract Radio free–free emission is considered to be one of the most reliable tracers of star formation in galaxies. However, as it constitutes the faintest part of the radio spectrum—being roughly an order of magnitude less luminous than radio synchrotron emission at the GHz frequencies typically targeted in radio surveys—the usage of free–free emission as a star formation rate tracer has mostly remained limited to the local universe. Here, we perform a multifrequency radio stacking analysis using deep Karl G. Jansky Very Large Array observations at 1.4, 3, 5, 10, and 34 GHz in the COSMOS and GOODS-North fields to probe free–free emission in typical galaxies at the peak of cosmic star formation. We find that z ∼ 0.5–3 star-forming galaxies exhibit radio emission at rest-frame frequencies of ∼65–90 GHz that is ∼1.5–2 times fainter than would be expected from a simple combination of free–free and synchrotron emission, as in the prototypical starburst galaxy M82. We interpret this as a deficit in high-frequency synchrotron emission, while the level of free–free emission is as expected from M82. We additionally provide the first constraints on the cosmic star formation history using free–free emission at 0.5 ≲ z ≲ 3, which are in good agreement with more established tracers at high redshift. In the future, deep multifrequency radio surveys will be crucial in order to accurately determine the shape of the radio spectrum of faint star-forming galaxies, and to further establish radio free–free emission as a tracer of high-redshift star formation. 
    more » « less
  10. Abstract We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μ m galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μ m. PEARLS is designed to be of lasting benefit to the community. 
    more » « less